

DOE Distributed and Collaborative Computing R&D activities

Richard Carlson

<u>richard.carlson@science.doe.gov</u>

LSN-MAGIC

Jan 7, 2015

Grids and Clouds

Grid research and standardization activities

- Globus and Grid pilot projects
- Partnerships with HEP, FES, NP, Climate
- Distributed computing for DOE scientists

Magellan Project

- Explore if/how DOE science communities can best use cloud based technologies
- http://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/Magellan Final Report.pdf

Hardware vs Software

ASCR Facilities Division

- Funds the purchase and operation of leadership class supercomputers and networks
- Supports open science research by multiple domain science communities
- Staff knowledge essential in porting codes and supporting scientists

ASCR Research Division

- Funds R&D activities that advance scientific discovery through the use of HPC
- Collaborative science communities use unique instruments and a range of compute/storage resources
- Current focus is developing a usable Exascale computer

Existing Research Program Highlights

Big Panda

Explore using US ATLAS developed
 Workload Management Software on
 OLCF Supercomputer (Titan)

Data driven computing requirements

Explore the future of Distributed
 Computing

dV/dt

 Goal: "make it easier for scientists to conduct large-scale computational tasks that use the power of computing resources they do not own to process data they did not collect with applications they did not develop"

Overview of the Resource Provisioning Loop

Scientific Workflows

Science applications have evolved from simple jobs to large complex workflows

- Multiple parameter sweeps to explore potential outcomes
- Multiple components developed by different experts
- Geographically distributed teams
- Relying on data and or analysis codes generated elsewhere

ASCR CS/NGNS workflows workshop

 Develop concepts to deal with massive amounts of data generated by simulations and instruments

Need for Workflow Scientists

Experimental, Theory, and Computational scientists

CS – Computer Science, NGNS – Next Generation Networking for Science

Analytical Modeling for Extreme-Scale Computing

Environments

Four large projects started in FY14

- IPPD: Integrated End-to-End Performance Prediction and Diagnosis for Extreme Scientific Workflows – Kerbson, et.al. (PNNL)
 - PANIORAMA
- Panorama: Predictive Modeling and Diagnostic
 Monitoring of Extreme Science Workflow –
 Deelman, et.al. (USC/ISI)

 Ramses: Robust analytical models for science at extreme scales – Foster, et.al. (ANL)

 X-Swap: Extreme-Scale Scientific Workflow Analysis and Prediction – Strohmaier, et.al. (LBNL)

http://science.energy.gov/ascr/research/next-generation-networking/am-projects/

Potential Distributed Computing Directions

- Near-time processing of Simulation, Experimental, and Observational data
 - Data generated by unique science instruments
 - Comparing current and archival data
- Interactive supercomputing with multiple simultaneous users
 - Computational steering
 - Dynamic and adaptive workflows
- Distributed Storage infrastructures
 - Support Computationally, Experimentally, and Observationally collected data
 - Dynamic distributed resource discovery libraries and services